What Causes Spinal Muscular Atrophy?

SMA is an autosomal recessive genetic disease. In order for a child to be affected by SMA, both parents must be carriers of the abnormal gene and both must pass this gene on to their child. Although both parents are carriers the likelihood of a child inheriting the disorder is 25%, or 1 in 4.
An individual with SMA has a missing or mutated gene (SMN1, or survival motor neuron 1) that produces a protein in the body called Survival Motor Neuron (SMN) protein. This protein deficiency has its most severe affect on motor neurons. Motor neurons are nerve cells in the spinal cord which send out nerve fibers to muscles throughout the body. Since SMN protein is critical to the survival and health of motor neurons, without this protein nerve cells may atrophy, shrink and eventually die, resulting in muscle weakness.
As a child with SMA grows their bodies are doubly stressed, first by the decrease in motor neurons and then by the increased demands on the nerve and muscle cells as their bodies grow larger. The resulting muscle atrophy can cause weakness and bone and spinal deformities that may lead to further loss of function, as well as additional compromise of the respiratory (breathing) system.
There are four types of SMA, SMA Type I, II, III, IV. The determination of the type of SMA is based upon the physical milestones achieved. It is important to note that the course of the disease may be different for each child.